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Perturbation of the two-beam diffracted power owing to the influence of a third

lattice node has been examined for various three-beam cases in a small finite

germanium crystal in the vicinity of the K-absorption edge. Although the crystal

was slightly imperfect, the main parts of the experimental results are very well

described within the framework of the fundamental theory of X-ray diffraction

in conjunction with Cromer–Liberman calculations for the resonant scattering

terms. Beam divergence and dynamical block size are treated as adjustable

parameters in the analysis. Observed changes in the three-beam profile

asymmetry are mainly attributed to size and not to resonance effects associated

with the triplet phase sum of the involved reflections. Close to the absorption

edge there is however some evidence indicating that f 0 values should be reduced

in magnitude compared to the tabulated ones.

1. Introduction

In order to study the atomic and electronic structure of matter,

the use of X-ray diffraction from systems in excited states or

under resonance conditions is of significant importance

(Coppens, 1992; Materlik et al., 1994). For example, when the

incident X-rays are tuned to an energy close to an electronic

transition for one kind of the constituent atoms of the

diffracting system, resonant processes (or, in this context,

often called anomalous dispersion) take place. This effect

gives a wavelength-dependent contribution to the scattering

amplitudes and subsequently alters, both in phase and

magnitude, the corresponding structure factors. In general,

standard two-beam diffraction techniques have been applied

to quantify and analyze this feature. However, as shown by

Chang, Stetsko and co-workers (Chang, 1986; Stetsko, Lin et

al., 2001; Stetsko, Juretschke et al., 2001), the use of three-

beam diffraction as a complementary technique may prove

interesting for such cases too. Here, a rotation (often called  
rotation) is performed about a (primary) reciprocal-lattice

vector, h, in order to gradually excite a third reciprocal-lattice

node onto the Ewald sphere. The corresponding (secondary)

reciprocal-lattice vector is denoted g. The resulting pertur-

bations of the monitored two-beam intensity level may carry

information about the triplet phase sum, ��, of the involved

reflections:

�� ¼ �hg þ �go � �ho; ð1Þ

where f�pqg represent the phases of the individual structure

factors constituting the triplet. These are thus sensitive to any

phase changes, �f ð�Þ, invoked by the resonance conditions

where the atomic form factor, f , becomes a complex quantity:

f ! f 0 þ f 0ð�Þ þ if 00ð�Þ ¼ jf ð�Þj exp½i�f ð�Þ�. Here, f 0 and f 00

denote the well known (isotropic) anomalous dispersion

correction terms. � is the X-ray wavelength. Hence, �� may

be a sensitive ‘signature’ of resonance effects (Larsen &

Thorkildsen, 1998). However, a detailed analysis and inter-

pretation (and possible parameter extraction) of the resulting

profiles require discussion and thorough consideration of

several other important quantities. ‘Intrinsic’ characteristics,

like phase-insensitive contributions from Umweganregung and

Aufhellung, have been extensively discussed in the literature;

consult, for instance, Chang (1992) and Weckert & Hümmer

(1997). Polarization-sensitive features have been the subject of

detailed investigations too (Stetsko et al., 2004). More prac-

tical issues with regard to identifying additional (interfering)

reciprocal-lattice nodes in the immediate proximity of the

Ewald sphere (Tanaka & Saito, 1975) and the rotation sense of

the crystal were early highlighted (Chang, 1982; Hümmer &

Billy, 1982). In addition to these properties, it is essential to

consider crystal and diffraction geometry as well as crystal

imperfections (Thorkildsen et al., 2003). The latter is a chal-

lenge to treat – normally no additional information about the

defect structure is known prior to a three-beam diffraction

experiment, and very few worked-out ‘real-crystal’ theories

are at hand (Larsen et al., 2005). Geometry considerations, on



the contrary, are somewhat more straightforward to relate to.

It has been shown that geometrical effects are of great

importance especially for pure Laue–Laue transmission cases

where the ratios between the effective crystal thickness and

the appropriate extinction lengths are among the governing

quantities in the interpretation of the resulting profiles

(Thorkildsen & Larsen, 1998; Weckert & Hümmer, 1998). In

this respect, it is important to realize that, since the extinction

length is proportional to ðjFp�qjjFq�pjÞ
�1=2, Fp�q being the

structure factor associated with the reflection p� q, it is

sensitive to resonance-induced changes in f as well.

In the following, we present an experimental study at the

K edge of germanium for a finite crystal. The scattering

geometry for the three-beam cases explored is Laue trans-

mission and the reflections involved have structure factors in

the range 83–176 as calculated for � ¼ 1:000 Å. Thus they are

all chosen among the ten strongest groups of reflections. As

pointed out by Stetsko and co-workers (Stetsko, Lin et al.,

2001), these may not be the ideal cases for the study of

resonant effects alone but are in general suitable for verifying

different aspects of dynamical diffraction. Crystal geometry in

particular turns out to be crucial for modeling the fine features

of the collected  -scan profiles. The crystal under investiga-

tion was not ideally perfect, as revealed by two-beam rocking-

curve measurements, but showed a small anisotropic broad-

ening. In the accompanying simulations, this is modeled by

treating the average dimension of the crystalline medium

responsible for the coherent interactions, in the following

called the dynamical block size, as a free parameter and

performing a convolution in appropriate angular variables,

here accounted for by the beam divergencies.

We begin this article with a brief review of the fundamental

theory of n-beam X-ray diffraction. The basis for this can be

found in the paper by Colella (1974). Here, however, we

include a novel analysis for the excitation errors that is

imperative for a proper modeling of the experimental results.

The present treatment excludes any effects arising from the

anisotropy of the scattering environment (Kokubun et al.,

1998, 2004; Lee et al., 2001).

2. Theory

2.1. Fundamental equations

The displacement field within a crystal being exposed to

incoming X-rays is expressed by the Ewald wave

Dðr; tÞ ¼
P

p

Dp exp½2�ið�t � kp � rÞ�: ð2Þ

The constituent waves build a self-consistent field, the internal

consistency being described by the fundamental equations of

dynamical theory (Authier, 2005),

Dp ¼
ðkpÞ

2

ðkpÞ
2 � K2

X
q

�p�qDq½p�: ð3Þ

Dq½p� represents the projection of the vector amplitude Dq on a

plane perpendicular to the wavevector kp, kp ¼ ko þ p, with p

being a reciprocal-lattice vector. ko is the wavevector of the

forward-transmitted field. K ¼ 1=� is the wavenumber in

vacuum, � ¼ cK the frequency and c is the velocity of light.

The elements f�pg are the coefficients in the Fourier series of

the electrical susceptibility,

�p ¼ �
re�

2

�Vc

Fp; ð4Þ

with re being the classical electron radius, Vc the unit-cell

volume and Fp the structure factor associated with the recip-

rocal-lattice node p. The quadratic nature of the denominator

of the resonance term,

ðkpÞ
2

ðkpÞ
2 � K2

;

implies that only lattice nodes very close to the Ewald sphere

will give rise to waves with considerable amplitudes.

2.2. Scalar representation

Maxwell’s equation, rrr �D ¼ 0, implies that the displace-

ment field is transverse. Using local coordinate systems

defined by the unit-vector triplets, e�p 2 frp; pp; upg with

rp � pp ¼ up and up ¼ kp=jkpj, the individual vector ampli-

tudes may be decomposed according to

Dp ¼
P2

�¼1

D�
p e�p :

Following Weckert & Hümmer (1997),

pp ¼
up � noh

jup � nohj
;

where

noh ¼
uh � uo

juh � uoj

is a reference unit vector perpendicular to the primary

diffraction plane. Thus all elements fppg are parallel to this

plane.

The vector equations (3) are then replaced by the scalar

equations

ðkpÞ
2 � K2

ðkpÞ
2
� �0

� �
D�

p �
X
q6¼p

X
�

�p�qðe
�
p � e

�
qÞD

�
q ¼ 0: ð5Þ

2.3. Resonance error, Anpassung and excitation error1

In this work, we will avoid extreme geometries where the

full set of solutions for equation (5) is needed. Thus we apply

the linearization scheme (Pinsker, 1978)
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parameters within the field of diffraction physics. Over the years, we have
adopted a ‘language’ somewhat in between Authier (2005) and Cowley (1990).
Thus it becomes an important task to give explicit definitions of all quantities
that are introduced.



ðkpÞ
2 � K2

ðkpÞ
2
� �0

� �
� 2

�p

K
;

where �p, called the resonance error, is defined by

�p ¼ kkpk � k: ð6Þ

k ¼ Kð1þ �o=2Þ is the average wavenumber within the

crystal. The kinematical boundary condition, which links the

wavevector ko to the incoming vacuum wavevector, Ko, is

expressed by

ko ¼ Ko � K	ne: ð7Þ

ne is a unit vector perpendicular to the crystal entrance surface

directed into the crystal and we denote the Anpassung as 	. To

first order, we have

kkpk ¼ kKpk � K	
p:

Kp ¼ Ko þ p and the direction cosine, 
p, is expressed by


p ¼ ne � ðKp=KÞ. At this point, it is convenient to introduce

the excitation error, �p, defined by the equation

�p ¼ kKpk � K: ð8Þ

It measures the shortest distance from lattice node p to the

surface of the Ewald sphere, i.e. along an Ewald-sphere radius.

The three key quantities are coupled by

�p ¼ �p � K	
p �
1
2K�o: ð9Þ

2.4. Working equations

Combing equations (2) and (7), we obtain an expansion for

the Ewald wave in a basis of vacuum plane waves,

Dðr; tÞ ¼
P2

�¼1

Pn
p¼1

d�p e�p exp½2�ið�t � Kp � rÞ�;

with

d�p ¼ D�
p exp½ið2�K	Þz�: ð10Þ

z ¼ ðr � neÞ measures the depth beneath the entrance surface

of the crystal. We define the symbol subequations:

� ¼ 2�K	; ð11aÞ

bp ¼ �
�K�0

j
pj
¼

re�

j
pjVc

F0; ð11bÞ

ap ¼
2��p

j
pj
; ð11cÞ

���pq ¼ �
�K�p�q

j
pj
ðe�p � e

�
qÞ ¼

re�

j
pjVc

Fp�qðe
�
p � e

�
qÞ: ð11dÞ

The fundamental equations, equation (5), are then expressed

by

�D�
p ¼ Sð
pÞ ðbp þ apÞD

�
p þ

P
q6¼p

P
�

���pq D�
q

" #
; ð12Þ

where Sð
pÞ is the sign of the direction cosine 
p. For Laue

beams, Sð
pÞ ¼ þ1 and, for Bragg beams, Sð
pÞ ¼ �1.

2.5. Excitation error revisited

The situation with a monochromatic incoming plane wave

and an idealized crystal having a lattice-node density in

reciprocal space (K space) modeled by an infinite set of Dirac

	 functions,
P

q 	ðK� qÞ, is never encountered. The sum spans

an infinite number of reciprocal-lattice vectors q. The

incoming beam inevitably has a certain divergence and

wavelength spread modeled by the change �Ko with respect

to the geometrical wavevector Ko. For real ‘mosaic’ crystals,

the lattice-node density should be represented by distributionsP
q WðK� qÞ. If the reciprocal-lattice vector p satisfies the

kinematical Bragg condition for the ideal case, we are now left

with an intrinsic deviation, �pi. Furthermore, there might be a

deliberate deviation, �pe, brought about by the action of the

goniometer. The latter quantity is represented by infinitesimal

rotations about some axes, """ 2 ðx;wÞ, i.e. �pe ¼ ð"""� pÞ�".
x is oriented perpendicular to the primary diffraction plane

and w is along the primary reciprocal-lattice vector. The

general expression for the excitation error then becomes

�p ¼ kKo þ�Ko þ pþ�pk � K 1�
��

�

� �

�
�Ko � pþ Ko ��pe þ Kp ��pi

K
: ð13Þ

The actual deviations are written as

�Ko ¼ K½�
1ro þ�
2po � ð��=�Þuo�;

�pe ¼ ðx� pÞ�!þ ðw� pÞ� :

Here, �
1 and �
2 measure the vertical and horizontal

divergence, respectively. x and w are orthogonal axes and

their contributions may be summed independently. Thus the

excitation error is built from

�p ¼ �
ð0Þ
p þ �

ð!Þ
p þ �

ð Þ
p þ �

ðiÞ
p

and explicitly

�ð0Þp ¼ �
1ðro � upÞ þ�
2ðpo � upÞ þ ð��=�Þð1� uo � upÞ;

ð14aÞ

�ð!Þp ¼ ½1=ð� sin 2�ohÞ�fup � ½uo � ðuo � uhÞ�g�!; ð14bÞ

�ð Þp ¼ ½1=ð2� sin �ohÞ�½up � ðuo � uhÞ�� ; ð14cÞ

�ðiÞp ¼ up ��pi: ð14dÞ

Here 2�oh ¼ ffðKo;KhÞ, �! ¼ ð!� !0Þ and � ¼ ð �  0Þ,

where !0 and  0 are reference positions calculated from an

average crystallographic metric. Crystal imperfections may be

modeled by distributions in these parameters. Thus the term in

equation (14d) may be embedded in equations (14b) and (14c)

leaving us with a broadening procedure handled by relevant

convolution integrals (Weckert & Hümmer, 1997). Equation

(14a) may be combined with equations (14b) and (14c) to

evaluate the effect of beam divergence and wavelength

dispersion with respect to the angular distributions of the

diffracted beams.
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2.6. Method of solution

The crystal geometry adopted for this theoretical review is a

semi-infinite parallel slab of thickness t. Thus no lateral

boundaries need to be considered. Equation (12) may be

formally written as

�jDi ¼ AjDi: ð15Þ

A is the ‘system’ matrix. The ket, jDi, is a column vector of the

scalar amplitudes arranged as follows:

jDi ¼

D�
o

D�
h

D�
g

..

.

D�
n

D�
o

D�
h

..

.

D�
n

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Equation (15) represents an eigenvalue problem, and we use

the symbol jvii for the eigenvector associated with the

eigenvalue �i,

jvii ¼

v�oi

v�hi

v�gi

..

.

v�ni

v�oi

v�hi

..

.

v�ni

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

The amplitude vector of the elements fd�p g in equation (10)

generally becomes

jdi ¼
P2n

i¼1

wi expði�izÞjvii:

wi is the weight or excitation coefficient of mode i. The weights

are determined from the dynamical boundary conditions. In

the present scheme of simplifications, these conditions, conti-

nuity of D? and Ek (the parallel component of the electrical

field vector) across the crystal surfaces, are replaced by

continuity of D. Specularly reflected waves at the entrance

surface are neglected. We write

Doðz ¼ 0Þ ¼ D�
0 ro þD�

0 po;

Dpðz ¼ 0Þ ¼ 0 p 2 fLaue beamsg; p 6¼ o;

Dpðz ¼ tÞ ¼ 0 p 2 fBragg beamsg:

To handle the boundary conditions efficiently, we introduce

the following notation:

zp ¼ ð0 _ tÞ , �zzp ¼ ðt _ 0Þ p 2 fo; h; g; . . . ; ng;

remembering that the entrance surface and the exit surface

will always be opposite pairs, located at z ¼ 0 _ t, for all

beams Kp. At the entrance, the actual amplitude vector,

denoted by jd0i, becomes

jd0i ¼

D�
0

0

0

..

.

0

D�
0

0

..

.

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
:

The boundary conditions may be compactly formulated by

introducing the matrices (� indicates a direct product)

Ti ¼ diag expði�izoÞ; expði�izhÞ; expði�izgÞ; . . . ; expði�iznÞ
� �

� diagð1; 1Þ

and

S ¼ ½T1jv1iT2jv2i . . . T2njv2ni�:

Thus at the entrance surface we have

Sjwi ¼ jd0i;

giving the excitation coefficient vector

jwi ¼ S�1jd0i: ð16Þ

Furthermore, defining the ‘conjugated’ matrices

Ti ¼ diag expði�i �zzoÞ; expði�i �zzhÞ; expði�i �zzgÞ; . . . ; expði�i �zznÞ
� �

� diagð1; 1Þ

and

S ¼ T1jv1iT2jv2i . . . T2njv2ni
� �

;

we obtain the amplitude vector at the exit, denoted by jdei, as

jdei ¼ Sjwi ¼ SS�1jd0i: ð17Þ

For an incoming beam of unit power, the intrinsic power for a

diffracted beam in the direction given by Kp (Laue transmitted

or Bragg reflected) becomes

Pp ¼
j
pj


o

X
�

jðdeÞ
�
p j

2: ð18Þ

The effect of distributions in the experimental parameters

entering equations (14) may finally be accommodated by

appropriate convolutions to yield simulations to be compared

with the measured three-beam profiles.

2.7. Anomalous scattering factors

The diffracted power, as given in equation (18), will be

sensitive to resonance conditions via the wavelength depen-

dence of the coupling factors, ���pq . These are directly propor-

tional to the structure factor, Fp�q [consult equation (11d)]. To

model the resonant scattering associated with the K edge of

germanium, we have primarily used anomalous scattering

factors as provided by Cromer & Liberman (1970, 1981) and
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made available by the program FPRIME (Cromer, 1983,

1995). Their method is based on the dipole approximation and

includes relativistic effects. Cross sections are calculated from

Dirac–Slater wavefunctions and the Kramers–Kronig rela-

tions are applied to derive f 0 from calculated values of f 00. The

influence of the resonance terms on an arbitrary coupling

factor is shown in Fig. 1. It should be noted that readily

accessible experimental values for Ge seem to be scarce but

Fig. 1 of Schülli et al. (2003) could be consulted. In general, the

literature (Begum et al., 1986; Fukamachi et al., 1990; Creagh,

1991; Creagh & McAuley, 1995) points especially to challenges

in accurately predicting f 0 very close to the K threshold.

Therefore, we have also evaluated results based on an

approach using second-order scattering-matrix theory (Kissel

et al., 1980, 1995). Here, a relativistic Hartree–Fock–Slater

potential with a Latter tail was used to obtain a tabulation of f 0

and f 00 for germanium between 5 and 25 keV (Kissel, 1995).

3. Experimental

A thin sample of germanium had been prepared from a single

crystal and etched normal to the ½�1110� direction, yielding an

average thickness of approximately 15 mm. From this foil,

small pieces were cut and glued onto short capillary glass

spikes. The experiments were carried out at the Swiss–

Norwegian beamlines (SNBL, BM01A) at ESRF. This

bending-magnet beamline was set up for parallel-beam optics

– that is a double Si(111) monochromator with a flat second

crystal. The energy resolution of the monochromatic beam is

��=� � 1:4� 10�4 and the beam divergences are approxi-

mately 25 mrad both horizontally and vertically. The incident-

beam cross section was defined by the post-monochromator

slits in such a way that it was 540� 540 mm at the diffrac-

tometer position. The wavelength was initially calibrated using

a known reflection from a small perfect-silicon-crystal sample.

All measurements were performed at room temperature.

Crystals were mounted on the special high-precision  -circle

HUBER diffractometer (Hümmer et al., 1987) with the

steering software system diff6 (Weckert & Hümmer, 1997).

Their quality was checked by performing two-beam ! scans. It

turned out that most of the samples had to be rejected because

of too high a degree of imperfection. Several showed signs of

mosaic block formation, however one single-crystal fragment

yielded acceptable homogeneous peaks. Fig. 2 displays the

experimental and the theoretical rocking curve for reflection
�11�11�33. Generally, the FWHM of the chosen primary reflections

spans the range ð4:5; 10:0Þ � 10�3 degrees. The slightly ideal-

ized shape of the crystal used for the investigations is shown in

Fig. 3. Since the wavelength calibration has a finite uncer-

tainty, the absorption K edge of the sample was determined

experimentally by measuring the fluorescence yield. The result

is depicted in Fig. 4. 16 reflections with 2� 2 ð21; 84	Þ were

collected to build the orientation matrix. A joint refinement of

orientation matrix and metric, the latter constrained to the

research papers
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Figure 3
Schematic picture of the germanium crystal showing actual dimensions
and crystallographic directions.

Figure 2
Measured (left) and simulated (right) rocking curves for reflection �11�11�33 in
germanium for a horizontal scattering configuration. The actual
wavelength is � ¼ 1:1200 Å. The simulation is for a plate thickness
t ¼ 11:5 mm. The FWHMs are ð4:5� 10�3Þ and ð0:7� 10�3Þ

	, respec-
tively.

Figure 1
The real part of the coupling factor ���go for the three-beam case
224=�2224=400 in germanium depicted as a function of wavelength. Red:
without contribution from resonance scattering terms. Blue: with
inclusion of f 0 and f 00 from the Cromer–Liberman analysis.

Figure 4
Fluorescence signal (counts s�1) as a function of wavelength across the
K-absorption edge. Each point is the average of three repetitions
(obtained by stepping � by 0:01	). The signal has been scaled by the
monitor counts and the counting time per measurement was 60 s. The
point of inflection occurs approximately at � ¼ 1:1161 Å. Compared to
the Cromer–Liberman resonance data (�K � 1:1166 Å), this indicates a
systematic error in the wavelength of � 0:0005 Å. The analysis of the
crystallographic metric confirms this result.



cubic crystal system, resulted in a lattice parameter

a ¼ 5:6557 ð2Þ Å (assuming negligible wavelength spread).

Comparing this result with the one given by Hom et al. (1975),

hai ¼ 5:657820 Å, indicates a systematic error in the wave-

length of approximately 0.0005 Å in accordance with the

fluorescence yield measurements. The shift in wavelength

probably reflects a minor error in the calibration of the

monochromator at the time of the experiments. Five pairs of

Friedel-equivalent  -scan profiles and a single one were

measured as a function of wavelength, nine values in the range

(1.1100, 1.1200) Å, with additional reference measurements at

� ¼ 1:0000 and � ¼ 1:2000 Å. Fig. 5 depicts the resonance

scattering factors for germanium in the actual wavelength

range. For each wavelength, the primary and secondary

reflections were re-centered in order to get an accurate

determination of the exact three-beam point position ð!0;  0Þ.

This local optimization ensures that the  scan is performed at

the top of the two-beam ! rocking curve.  curves were

obtained by angular scans having a fixed width of 0.2	 divided

into 400 steps of ð0:5� 10�3Þ	. The unperturbed two-beam

level was then recovered at both ends of the scan interval. For

the Laue-transmission cases where the two-beam ridge has a

symmetrical appearance, cf. Fig. 6, the elaborate centering

procedures warrant an accurate experimental three-beam

profile. An alternative approach, utilizing a combined != -

step scan, may cause an unwanted broadening of the  
profiles, cf. Thorkildsen (1987) and Mo et al. (1998). As

pointed out by Shen (1993), the natural beam divergence will

inherently provide a partial ! integration. A plastic (point)

scintillator counter was used. The detector window was chosen

large enough to give an appropriate instrumental integration

providing data comparable to simulations that take a finite

beam divergence into account. The results presented are

averages of ten or more subsequently repeated scans, ensuring

proper counting statistics. The signal-to-noise ratio is worse

for wavelengths just below the K edge. This was partly

compensated for by an increase in accumulated counting time.

Separate calculations were performed in order to verify that

no other interfering neighboring lattice nodes were present

within the scan interval.

4. Results and discussion

Four experimental three-beam profiles, presented as the

relative change in the diffracted power with respect to the

corresponding two-beam level, �Ph=Ph, for nine different

values of the wavelength2 are shown in Figs. 7– 10. Owing to

different parameter combinations, they cover various

appearances of three-beam perturbations. All three-beam

profiles are arranged such that a positive value of � corre-

sponds to a position of the secondary reciprocal-lattice node

inside the Ewald sphere. The figures also illustrate the beam

paths through the crystal (as calculated for � ¼ 1:200 Å), the

wavelength dependence of the coupling parameters, ���pq , and

the results of the simulations. The three-beam profiles chosen

all have beam paths that may be approximately associated

with a single entrance surface and are classified as Laue–Laue

cases. Table 1 gives a summary of the analysis of the rocking-

curve measurements of the associated primary reflections. It is

evident that there is a broadening of the reflections that may

be attributed to mosaicity. To simulate the experimental

profiles, convolution integrals are introduced to take this

feature into account. From the point of view of the calcula-

tions, broadening may be empirically linked to beam diver-

gence that has been modeled by a product of two identical

Pearson VII functions3 (Snyder et al., 1999) in the variables

�
1 and �
2, Pearson VII index m ¼ 2. The simulated

profiles are hence obtained by a two-dimensional-numerical
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Table 1
Simulating the FWHM, �!e, of the experimental rocking curves, cf. Fig. 2,
for the primary reflections of the three-beam cases depicted in Figs. 7–10.

Contributions are due to the intrinsic width of the reflection, �!i, dispersion,
�!d and mosaic spread, �!m. The latter quantity is calculated based on the
Gaussian assumption of quadratic summation of individual terms,
�!2

e ¼ �!2
i þ�!2

d þ�!2
b þ�!2

m. �!b ¼ ð1:5� 10�3Þ
	 is due to beam

divergence. All values are given in thousandths of a degree. Apart from the
intrinsic widths, all values are rounded to within ð0:5� 10�3Þ

	. Data are for
� ¼ 1:1200 Å.

h �!e �!i �!d �!m

�11�11�33 4.5 0.70 3.0 3.0
�11�11�55 7.0 0.55 5.0 5.0
�11�11�11 8.0 1.65 1.5 7.5
�11�33�55 10.0 0.25 6.0 8.0

Figure 5
Resonance scattering factors for germanium after Cromer & Liberman,
real ðf 0Þ and imaginary ðf 00Þ parts. The red points indicate the actual
wavelengths (corrected for the systematic error) used for the measure-
ments.

Figure 6
Three-beam three-dimensional profile for the case �11�11�33=�22�220=11�33 calcu-
lated for a crystal thickness t ¼ 10 mm and a wavelength � ¼ 1:1100 Å.
�! and � in thousandths of a degree.

2 Actual wavelengths are � = 1.1100, 1.1150 (simulated only), 1.1155, 1.1160,
1.1163 (measured only), 1.1165, 1.1167, 1.1170, 1.1175, 1.1180 (simulated only)
and 1.1200 Å.
3 The Pearson VII function, �ðxÞ, is defined by �ðxÞ ¼ �ð0Þ½1=ð1þ Cx2Þ

m
�

with C ¼ ð21=m � 1Þ=ð�=2Þ2.



convolution procedure. The ranges of integration are 
2�,

where � is the FWHM of the Pearson VII functions. Wave-

length dispersion is thus embedded into the description of the

divergence and it is assumed that beam angular broadening

owing to crystal imperfection is covered by this procedure too.

� is treated as an adjustable parameter. A semi-infinite slab is

still kept as the geometrical model for the simulations.

However, for the same reason as above, the dynamical block

size, t, is treated as a free parameter, t � T, the measurable

crystal thickness. Generally, owing to its finiteness and being
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Figure 9
Three-beam case �11�11�11=11�11=�22�220. Upper left: beam paths through the
crystal illustrated by their wavevectors. Upper right: coupling parameters
among the waves. The figure shows the absolute value of the real part of
���pq . pq 2 oh (red), og (blue) and gh (green). Lower left: experimental
three-beam profiles. Lower right: simulated profiles; dynamical block size
t ¼ 8:5 mm, � ¼ ð5:0� 10�3Þ	. � is given in thousandths of a degree.

Figure 8
Three-beam case �11�11�55=�22�220=11�55. Upper left: beam paths through the
crystal illustrated by their wavevectors. Upper right: coupling parameters
among the waves. The figure shows the absolute value of the real part of
���pq . pq 2 oh (red), og (blue) and gh (green). Lower left: experimental
three-beam profiles. Lower right: simulated profiles; dynamical block size
t ¼ 10:0 mm, � ¼ ð6:0� 10�3Þ	. � is given in thousandths of a degree.

Figure 7
Three-beam case �11�11�33=�22�220=11�33. Upper left: beam paths through the
crystal illustrated by their wavevectors. Upper right: coupling parameters
among the waves. The figure shows the absolute value of the real part of
���pq . pq 2 oh (red), og (blue) and gh (green). Lower left: experimental
three-beam profiles. Lower right: simulated profiles; dynamical block size
t ¼ 11:5 mm, � ¼ ð6:0� 10�3Þ	. � is given in thousandths of a degree.
The actual wavelengths indicated are valid for Figs. 8–10 as well.

Figure 10
Three-beam case �11�33�55=�44�22�22=3�11�33. Upper left: beam paths through the
crystal illustrated by their wavevectors. Upper right: coupling parameters
among the waves. The figure shows the absolute value of the real part of
���pq . pq 2 oh (red), og (blue) and gh (green). Lower left: experimental
three-beam profiles. Lower right: simulated profiles; dynamical block size
t ¼ 9:0 mm, � ¼ ð6:0� 10�3Þ	. � is given in thousandths of a degree.



completely bathed in the X-ray beam, a single well defined

length characterizing the crystal does not exist. The best

overall values for the model parameters, t and �, were

determined by a trial-and-error approach repeating the

calculations for various combinations of these quantities. The

simulated profiles are built from 21 individual simulations

across the FWHM of the underlying two-beam rocking curves

(by stepping �!).

In the model simulations, the incoming beam is assumed to

be 100% polarized in the horizontal plane. Although not

addressed in this particular experiment, the fraction of

majority polarization, fh, as given by Coppens (1992), was

determined as 0.97 at a later stage (Thorkildsen, Larsen,

Semmingsen & Bjaanes, 2001). A full simulation of the

intrinsic three-beam profile for the �11�11�11=11�11=�22�220 case, based

on this value for fh (� ¼ 1:1167 Å and t ¼ 7:5 mm), resulted in

a profile congruent to what was obtained with fh ¼ 1:0. The

differences between the two simulations were less than 1% in

the crucial parts of the profile (cf. Fig. 17). No attempt has

been made to implement a variable random noise signal in the

simulations. All calculations are performed by the software

system Mathematica version 5.0 (Wolfram, 2003).

4.1. General comments

The overall agreement between simulations and experi-

ments is quite astonishing. All major features may be well

described by the fundamental theory of X-ray diffraction

applying the Cromer–Liberman values for the resonance

parameters. For the three-beam cases presented, the theor-

etical variation of the triplet phase sum �� with wavelength

has almost identical appearance as depicted in Fig. 11, i.e.

�� � 0	. For this situation, we expect an intrinsic profile

asymmetry typically as shown in Fig. 12. Thus one might be

tempted to conclude that the experiments for the cases
�11�11�33=�22�220=11�33 and �11�11�11=11�11=�22�220 indicate an error in the theor-

etical estimates for ��. However, as mentioned in the Intro-

duction, the profile shape for the Laue–Laue diffraction

condition is critically dependent on the slab thickness. This is

depicted in Fig. 13. Inverted asymmetries may be observed for

very small thicknesses too. In transmission geometry, the

expected three-beam profile behavior, cf. Fig. 6 in the article
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Figure 11
Triplet phase sum �� as a function of wavelength for the three-beam case
�11�11�33=�22�220=11�33. Calculation based on Cromer–Liberman values for f 0

and f 00.

Figure 12
Generic intrinsic three-beam profiles for a triplet phase sum �� ¼ 0	.
Left: Aufhellung case. Right: Umweganregung case. � is given in
thousandths of a degree.

Figure 13
Intrinsic three-beam profiles for �11�11�11=11�11=�22�220 as a function of the slab
thickness t. � ¼ 1:1100 Å and t ¼ 2; 3; . . . ; 9 mm.

Figure 14
The intrinsic integrated two-beam power (arbitrary units) for �11�11�11
(diffraction in the horizontal plane) as a function of plate thickness
revealing the Pendellösung behavior in Laue geometry. Black solid line:
� ¼ 1:1100 Å. Black dashed line: � ¼ 1:1165 Å. Red dashed line:
� ¼ 1:1167 Å. Red solid line: � ¼ 1:1200 Å.

Table 2
Average path lengths lp [mm] along the beam directions Kp; p 2 fo; h; gg,
and appropriate direction cosines, 
p, for the three-beam cases, as
calculated for � ¼ 1:110 Å.

h=g=h� g lo lh lg 
o 
h 
g

�11�11�33=�22�220=11�33 15 15 16 0.933 0.933 0.933
�11�11�55=�22�220=11�55 15 16 17 0.848 0.848 0.848
�11�11�11=11�11=�22�220 15 15 15 0.956 0.956 0.956
�11�33�55=�44�22�22=3�11�33 18 27 15 0.668 0.390 0.945



by Weckert & Hümmer (1997), is reproduced when the slab

thickness, or in the present case the dynamical block size, is

not larger than the Pendellösung distance of the primary

reflection of the actual triplet (Weckert & Hümmer, 1998).

Pendellösung plots of the integrated power for the �11�11�11
reflection are shown in Fig. 14 for different wavelengths close

to the K edge. Substantial variations are revealed. If the

experimental conditions correspond to a position beyond the

first maximum of the Pendellösung, inverted profiles may be

observed. This is the case for the triplets �11�11�33=�22�220=11�33 and
�11�11�11=11�11=�22�220 in this study. We consequently lean toward the

opinion that the observed inverted profiles are an effect of the

dynamical block size and as such not addressable to ��. This

feature is not easily explained by approximate diffraction

theories (Shen & Huang, 2003; Thorkildsen, Larsen &

Weckert, 2001) and may lead to misinterpretation of the value

for the triplet phase sum. For the profiles presented, their

Friedel partners come up with identical characteristics and

thus support the conclusions drawn. Average path lengths,

lp ¼ ð1=VÞ
R

vðTp þ T 0pÞ dV, with Tp measuring the distance

from the entrance surface to the volume element dV and T 0p
the distance from the same element to the exit surface, both

measured along Kp, are calculated along the same lines as the

absorption factor by an analytical method (de Meulenaer &

Tompa, 1965). The results are summarized in Table 2 together

with appropriate direction cosines. It is a common feature that

the crystal thickness (15 mm along ½�1110� of Fig. 3) exceeds the

estimates of the dynamical block size most appropriate for

fitting purposes. This fact is, as explained, associated with the

crystal imperfection.
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Figure 15
Best fit (black solid line) to experiments (in red) for the three-beam case
�11�11�33=�22�220=11�33. Increasing wavelength from upper left to lower right Actual
dynamical block sizes applied in these simulations are summarized in
Fig. 16. Abscissa: � in thousandths of a degree. Ordinate: relative
change in two-beam power.

Figure 16
Most appropriate dynamical block size as a function of wavelength,
revealed by comparison between simulations and experiments. Red:
�11�11�33=�22�220=11�33. Blue: �11�11�11=11�11=�22�220.

Figure 18
Intrinsic three-beam profiles for �11�11�11=11�11=�22�220. Red: � ¼ 1:1165 Å. Blue:
� ¼ 1:1167 Å. f 0 after Cromer & Liberman. Top left: t ¼ 7:5 mm. Top
right: t ¼ 7:5 mm with f 0 reduced by a factor of 0.6. Bottom: t ¼ 9:0 mm. A
slab thickness of t ¼ 7:5 mm gives the best fit at � ¼ 1:110 and 1:120 Å,
while t ¼ 9:0 mm is the optimum choice close to the resonance. � is
given in units of thousandths of a degree.

Figure 17
Three-beam case �11�11�11=11�11=�22�220. The parts of a profile of greatest
significance for assessment of the best fit have been encircled.
Experiments at � ¼ 1:1165 Å. Dynamical block size used in the
simulations are t ¼ 7:5 and t ¼ 9:0 mm for the left and right illustrations,
respectively.



4.2. Details

The simulations were performed by increasing the dy-

namical block size in steps of 0.5 mm. It turned out that the

best fits were obtained by different values of t for the various

wavelengths. For the case �11�11�33=�22�220=11�33, this is illustrated in

Fig. 15. An apparent increase in thickness close to �K is the

common feature. A summary is depicted in Fig. 16, where we

have also included the results for �11�11�11=11�11=�22�220. Fig. 17 indi-

cates the parts of a profile we emphasize in particular when

assessing goodness of fit by visual inspection. Since t should

have a constant value, at least for a given three-beam case, this

observation may indicate that another parameter of the scat-

tering system is not properly described. A comparison of the

Cromer–Liberman model with the Kissel model for the reso-

nance parameters f 0 and f 00 reveals the largest differences for

f 0 in the vicinity of the resonance. Fig. 18 shows how changes in

the main features of an intrinsic three-beam profile close to

the K resonance owing to a thickness variation may be

reproduced by reducing the value of f 0. In the example

presented, a factor of 0.6 was applied. We note that this seems

to be in accordance with the adjustment of the high-energy

limit of f 0 from the Cromer–Liberman calculations as indi-

cated by Kissel et al. (1995). This may not be the final (and

only) explanation, but at least indicates that three-beam

diffraction in nearly perfect crystals may offer a very sensitive

probe for resonance scattering effects.

4.3. Challenges

Figs. 19 and 20 point out some peculiar results. In Fig. 19,

large variations in the pair of Friedel three-beam profiles

across the K edge are displayed. This may be attributed to

different crystalline imperfection as encountered by the

spatially reversed wavefields. Fig. 20 reveals a case where the

‘best’ simulations give subpar matching to the experimental

points. For the actual three-beam case, the beam paths in the

finite crystal, as illustrated in Fig. 21, are generally not

compatible with the adopted model for simulation where the

boundary conditions are specified with respect to a single pair

of entrance and exit surfaces. These two aspects of the crys-

talline sample, its finite shape and its inherent state of

imperfection, are the most intriguing ones both with respect to

simulations and for correct interpretation of profile asym-

metries.

5. Concluding remarks

Three-beam diffraction represents a very sensitive diffraction

condition, revealing subtle details related to both coherent

and incoherent scattering processes. In this paper, the focus

has been on resonance scattering effects in conjunction with

geometry. The examples presented confirm our opinion that

three-beam diffraction is a versatile experimental method. We

find it of great importance that various crystalline systems

should be further investigated to fully explore its potential and

its implications on future developments of diffraction theories.

The measurements were carried out at SNBL, ESRF,

Experiment 01-02-43. We gratefully acknowledge the support

from the SNBL staff and Dr I. Snigireva for providing the

Ge crystal. This work has been supported by Norges

Forskningsråd, Grant 129638/431.
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Hümmer, K., Bondza, H. & Weckert, E. (1987). Acta Cryst. A43,

C222.
Kissel, L. (1995). Private communication.
Kissel, L., Pratt, R. H. & Roy, S. C. (1980). Phys. Rev. A, 22,

1970–2004.
Kissel, L., Zhou, B., Roy, S. C., Sen Gupta, S. K. & Pratt, R. H. (1995).

Acta Cryst. A51, 271–288.
Kokubun, J., Ishida, K., Cabaret, D., Mauri, F., Vedrinskii, R. V.,

Kraizman, V. L., Novakovich, A. A., Krivitskii, E. V. & Dmitrienko,
V. E. (2004). Phys. Rev. B, 69, 2451031–24510313.

Kokubun, J., Ishida, K. & Dmitrienko, V. (1998). J. Phys. Soc. Jpn, 67,
1291–1295.

Larsen, H. B. & Thorkildsen, G. (1998). Acta Cryst. A54, 129–136.
Larsen, H. B., Thorkildsen, G. & Weckert, E. (2005). Acta Cryst. A61,

134–138.
Lee, T. L., Felici, R., Hirano, K., Cowie, B., Zegenhagen, J. & Colella,

R. (2001). Phys. Rev. B, 64, 2013161–2013164.

Materlik, G., Sparks, C. J. & Fischer, K. (1994). Resonant Anomalous
X-ray Scattering: Theory and Applications. Amsterdam: Elsevier.

Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.
Mo, F., Hauback, B. C., Mathiesen, R. H., Kvick, Å. & Weckert, E.
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Weckert, E. & Hümmer, K. (1997). Acta Cryst. A53, 108–143.
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